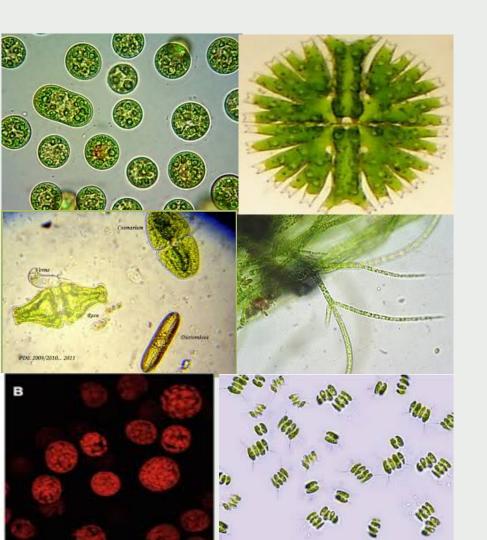

D.Sc. Paula Assemany


Federal University of Lavras, Brazil

MICROALGAE

In the wastewater treatment

Microalgae

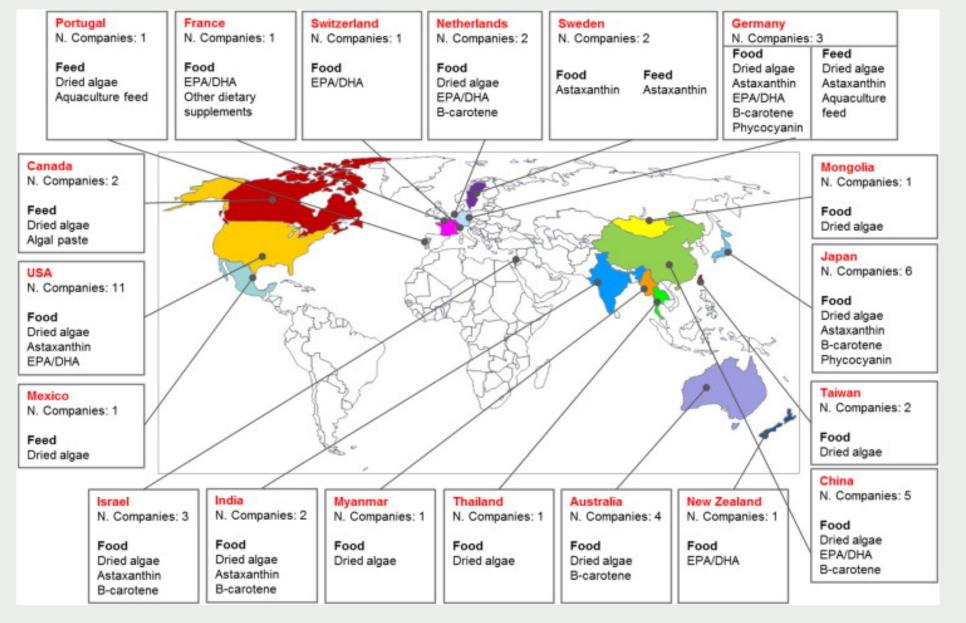
"microorganisms that can grow photosynthetically"

(SHEEHAN, 1998)

SOLAR ENERGY

$$CO_2+NO_3^-+PO_4^{-3}+H_2O \longrightarrow [CH_nONP] + O_2$$

ALGAL BIOMASS

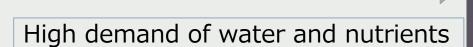

Microalgae

Great potential for biotechnology industry and energy:

- higher growth rate compared to other plant species
- possibility of cultivation throughout the year
- ability to grow in areas unsuitable for agriculture
- ability to develop in the most different climates

After 2nd World War: diatoms oil extraction 46 industries in Asia for energy crisis 1st Chlorella Protein source plant 1950ies 1960ies 1970ies 1980ies Food demand increase Wastewater

Global distribution of private companies producing commercial food and feed products derived from microalgae (Vigani et al., 2015)


Country	Company	Technological level	Uses/applications	
Brazil and United State of America (USA)	Solazyme	Commercial/ Flagship	Microalgae production and cosmetics products, bioplastics, oils, encapsulated lubricant and fuels	
	Algenol		Personal care ingredients, foods, biofuels (from ethanol to crude oils), biofertilizers and biostimulants	
USA	BioProcess Algae, LLC	Demo	Microalgae production and other products: feed (including fish), chemicals compost, nutraceuticals, ethanol and biodiesel	
Denmark	Kalundborg Symbiosis	Demo	Wastewater treated and microalgae production	
	A4F Algae for future	Industrial/Demo/Pilot	Bioengineering projects for the industrial microalgae production, biofuels, microalgae-based products and applications	
Portugal	Algafarm (A4F Algae for future) Secil/Allmicroalgae	Commercial/ Demo	Microalgae (<i>Chlorella</i>) biomass production and other by- products (utilized for biofuels)	
	Buggypower (Portugal), Lda	Demo	Algal biomass for biofuels production and other products (fatty acids, antioxidants, minerals, pigments, vitamins and others)	
Spain	AlgaEnergy	D:1-4	Microalgae production for agriculture, aquaculture, food and feed, natural extracts, cosmetics, gardening and biofuels	
	(The Netherlands) TNO-Valorie	Pilot	Biofuels (biodiesel) and by-products	
The Netherlands	(The Netherlands) AlgaePARC		Develop technologies both on a lab and pilot scale for microalgae production and by-products	
			Mendonça et al. (in press)	

Microalgae production

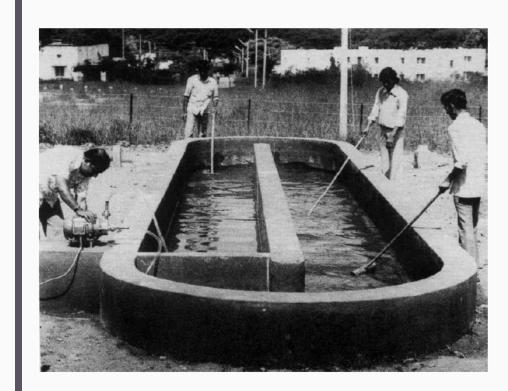
The world's oil demand in 2018 was 98.8 million barrels per day (IEA, 2018).

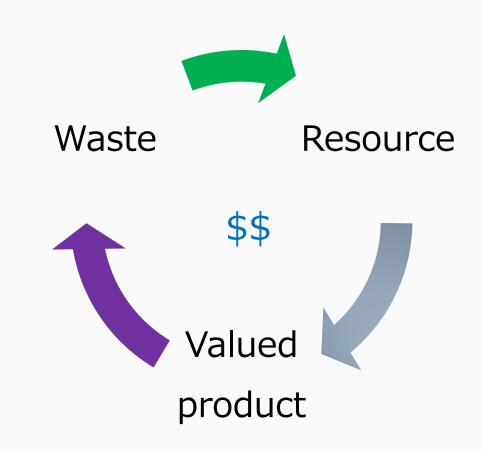
In a scenario of meeting 5% of this demand, cultivating microalgae with 40% lipids:

$$106CO_2 + 236H_2O + 16NH_4^+ + HPO_4^{-2} \rightarrow C_{106}H_{181}O_{45}N_{16}P + 118O_2 + 171H_2O + 14H^+$$

61.4 million tons of N would be necessary to meet such production (~58.9% of what was consumed in agriculture in the entire world in 2010 - Heffer, 2013).

8.7 million tons of P would be required.

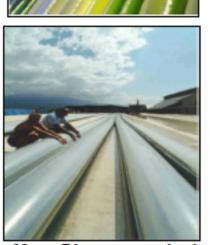

The water consumption would be 2.6 billion m³.

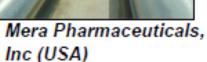

How to stimulate the growth of microalgae in a rational and sustainable way up to the commercial scale?

Wastewater as growth medium

- o Inputs "at no cost"
- Reduced production costs
- Recycling of nutrients from the wastewater

Change of perspective


Integrated resource recovery



√Recovery

Closed Photobioreactors

BioReal, Inc., (USA)

Biomass productivity:

1.5 kg/m².day (~158 ton/ha.year)

Maximum biomass concentration:

 4 kg/m^3

Open Photobioreactors

Biomass productivity:

 $0.025 \text{ kg/m}^2.\text{day } (\sim 82 \text{ ton/ha.year})$

Maximum biomass concentration:

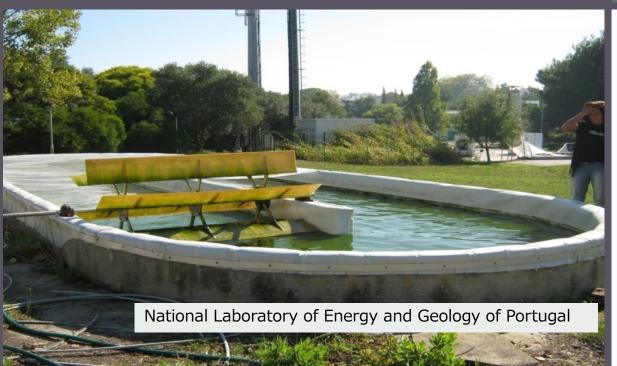
 $1 \text{ kg/m}^3 (0.5 \text{ kg/m}^3 - \text{typical})$

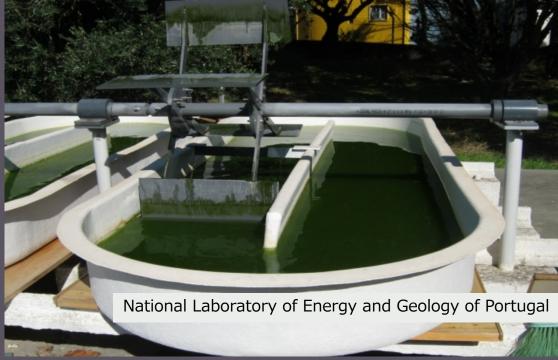
High rate algal ponds (HRAPs) or raceways

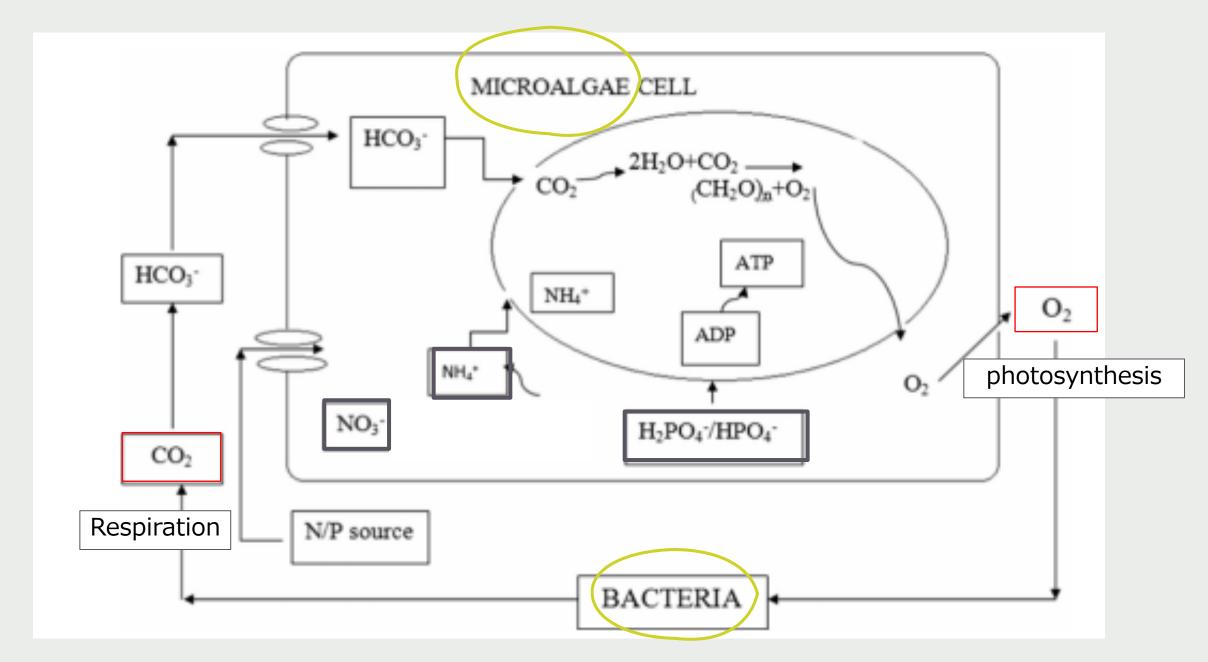
for wastewater treatment and biomass production

- Sustainable wastewater treatment plants
- Polishing unit nutrient recovery
- Easy operation and reduced construction and maintenance costs

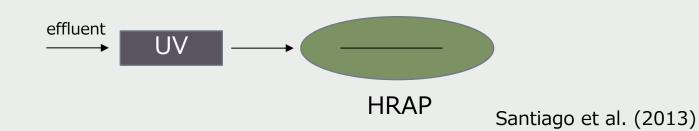
HRAPs in Christchurch, New Zealand (5 ha)

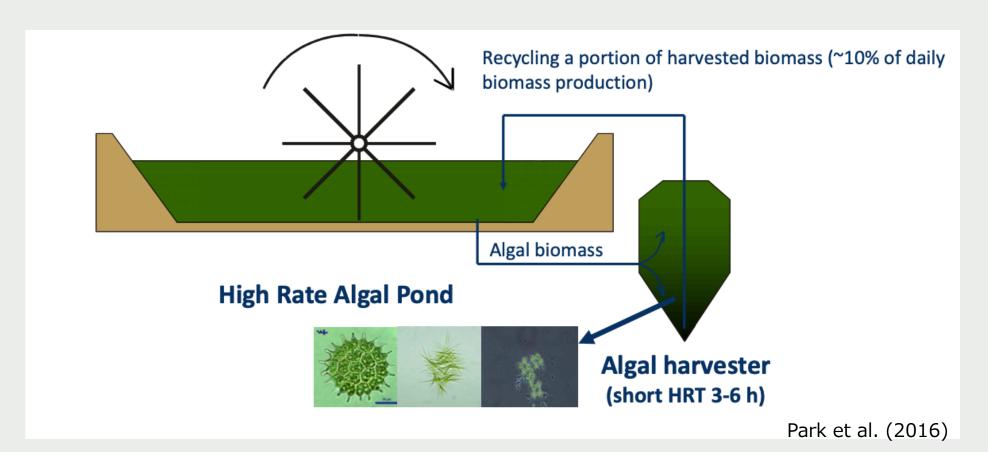


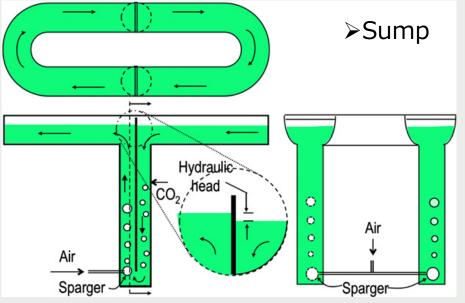

HRAPs in Cambridge, NZ (2 ha)



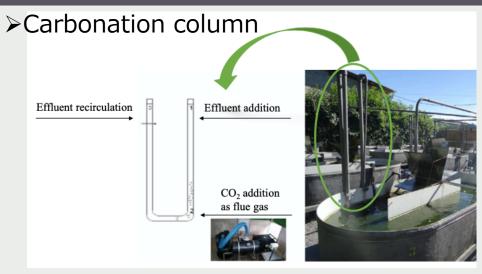
Microalgae in the wastewater treatment


- Symbiotic relationship between algae and heterotrophic bacteria
- Mixotrophic metabolism
- Native species
- CO₂ assimilation




			Efficiency removals (%)		D		
Effluent	Microalgae strain	Reactor	N	P	Organic Matter	Biomass productivity (g TSS m ⁻² d ⁻¹)	Reference
Rural streams with nutrient pollution	Consortium: <i>Spirogyra sp., Cymbella sp and Navicula</i> sp.	HRAP (20 m²) with filamentous algae matrix	18% of TN	65.8% of TP and 68.1% of PO ₄ ³⁻	-32.8% of total COD	-	Kim et al. (2018)
Primary settled domestic wastewater	Consortium: <i>Mucidosphaerium</i> <i>pulchellum</i> (85% of abundance)	HRAP 20 cm depth (2.23 m²) with CO ₂ addition	69.3 - 78.9	19.2 - 34.3	-	2.1 - 10.1	Sutherland et al. (2014)
Primary settled domestic wastewater	Consortium: <i>Micractinium</i> sp. and <i>Desmodesmus</i> sp.	HRAP (1.25 ha) with CO ₂ addition	5.6 -67.4	14.0 - 24.4	81.8 - 92.1% of dissolved BOD ₅	4.4 - 11.5 g VSS m ⁻² d ⁻¹	Craggs et al. (2012)
Landfill leachate	Chlorella vulgaris, Spirulina sp., Scenedesmus quadricauda	HRAP (0.27 m ²)	94.3 - 98.7	49.3 - 85.6% of PO ₄	69.4 - 90.7% of COD	9.2 - 26.3 g VSS m ⁻² d ⁻¹	Mustafa et al. (2012)
Pre-treated diluted swine manure	Consortium: Chlamydomonas, Chlorella and Nitzschia	HRAP (1.5 m ²)	62 - 88% of TKN	-	57 - 67 of COD	5.7 - 27.7 g m ⁻² d ⁻¹	De Godos et al. (2009)

Devices for biomass production increase:


- CO₂ addition
- Pre-UV disinfection
- Biomass recirculation

Ketheesan and Nirmalakhandan (2012)

Couto et al. (2020)

CO₂ addition

- Avoids pH increase and nutrients loss
- Depends on the WW C/N ratio

(i.e. domestic sewage)

Microalgae strain	Growth medium	Reactor	CO ₂ source	CO ₂ concentration (%)	Biomass productivity (g.L ⁻¹ .d ⁻¹)	Reference
Consortium (predominance of <i>C.vulgaris</i>)	Domestic sewage after septic tank	HRAP	Exhaust gas of gasoline combustion	5.9	6.12 g.m ⁻² .d ⁻¹	Assis et al. (2019)
Nannochloropsis oculata		HRAP	Coal-fired power plant	11 - 14	26.4 g.m ⁻² .d ⁻¹	Cheng et al. (2015)
Tetraselmis sp.		10 L Glass Flasks	Cement flue gas	12 - 15	0.057	Olofsson et al. (2015)
Spirulina sp.					0.08	
Scenedesmus obliquus		Tubular Photobioreator	Thermoelectric industry	12	0.05	Radmann et al. (2011)
Synechococcus nidulans	Synthetic				0.04	
Chlorella vulgaris	medium				0.09	
Nannochloropsis gaditana		Flat-Panel reactor	Coal-fired powerplant	10 - 15	0.078	Rodríguez-López et al. (2020)
Chlorella sp.		Bubble column Photobiorreator	Coke oven Stell	23	0.13	Chiu et al. (2011)
Desmodesmus abundans		3L Photobioreactor	Cement kiln / dust	25	0.227	Lara-Gil et al. (2016)

Mendonça et al. (in press)

Biomass harvesting

- > Settlers
- > Sedimentation ponds
- > Coagulation and floculation process
- Biofilm reactors (attached growth)

Concentration step will depend on biomass valorization route 23

Hybrid reactor

HRAP + biofilm reactor

HRAP for WW treatment

Biofilm for biomass separation and harvesting

- ✓ Presence of BR in a HRAP was able to supply the demand for CO₂ (Assis et al., 2017)
- ✓ Easiness of biomass harvesting

Characteristics of separation and harvesting of the concentrated biomass in the settling tanks and in the BR (standard deviations are shown in parentheses).

		SVI (ml/g)	Humidity* (%)	Harvesting (g/ day)
System 1	ST 1	21.12 ^a (7.71)	91.84 ^a (1.79)	2.64 ^b (1.04)
System 2	ST 2	29.65 ^a (15.25)	91.67 ^a (2.01)	2.23 ^b (1.36)
2	BR Total (ST 2 + BR)	- -	93.89 ^a (4.99) -	11.45 ^a (7.98) 13.68

Biomass production in HRAPs and BR (standard deviations are shown in parentheses).

		Production of chlorophyll-a		Total biomass production (volatile solids)	
		Production (g/m²)	Productivity (g/m².day)	Production (g/m²)	Productivity (g/m².day)
System 1	HRAP 1	0.55 ^b (0.38)	0.05 ^a (0.04)	36.75 ^b (18.05)	3.68 ^a (1.81)
System 2	HRAP 2	0.48 ^b (0.29)	0.05 ^a (0.03)	28.79 ^b (11.28)	2.88 ^a (1.13)
	BR	1.64 ^a (0.93)	0.08 ^a (0.04)	64.28 ^a (29.83)	3.25 ^a (1.10)
	Total (HRAP	2.12	0.13	93.07	6.13
	2 + BR)				

- Low lipid content
- Less noble uses
- Native species

Directly influenced by WW characteristics

Nutritional aspects from wastewater grown biomass

Composition (%)	Beer biomass	Sewage biomass
Neutral lipids	14.9 (0.1)	11.7 (1.6)
Membrane lipids	3.0 (0.8)	9.9 (1.7)
Total lipids	17.9 (0.6)	21.6 (2.6)
Carbohydrates	30.2 (0.5)	3.6 (0.8)
Proteins	31.4 (0.0)	26.3 (4.7)
Ash	15.5 (0.0)	40.0 (8.1)

Mean values, with standard deviation in parentheses

Assemany et al. (2020)